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Abstract: - Scarlet an Artificial Teaching Assistant is a personal digital assistant that has been developed with 
main aim to assist students in their learning process by ensuring fast and efficiently search of documents and 
learning materials. Scarlet is able to give an adequate response to a specific question based on knowledge 
gathered by an unique algorithm which enables her to recognize context during file and web page content 
search. After finding the most appropriate answer Scarlet seeks for student feedback in order to improve future 
search. The metric proposed is based on the power law which occurs in natural language, that is the Zipfian 
distribution[1].  It is designed to work for any spoken language although it might work on some better than 
other depending on the nature of the language, the structure, grammar and semantics. The method uses this 
metric to derive context from data and then queries the data source looking for the best match. The whole 
implementation is rounded off by a learning module which gives the system a learning curve based on users 
(students) scoring how relevant the output is among other parameters. All the main algorithms and newly 
proposed metrics like the “contextual similarity” are presented in the same paper. 
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1 Introduction 

Evaluating the similarity of two sequences is 
a standard computer science problem and has a 
wide area of use. A great deal of applications, 
from search engines to document ranking, from 
gene finding to prediction of protein functions, 
from network surveillance tools to anti-virus 
programs critically depend on analysis of 
sequential data. [1]   

We will describe the matching of two 
sequences as well as the search process for the 
closest matching sequence from a pool of 
sequences which appeared to be the bottleneck 
of other methods like the Jaccard Index. We are 
also going to explain the naïve implementation 
which would directly follow from the 
mathematical model and optimizations, for 
which we have provided proof in the same 
paper, which will reduce the time complexity 
for both sequence comparison and sequence 
matching down to quasilinear time. In the end 
we will provide our benchmarks with data 
collected during the research. 
 
 
 

2 The Problem 
The main performance issue with sequence 
matching proved to be the fact that known 
methods didn’t perform well on measurements 
made on the union of two or more sequences 
which are not directly correlated. This is mainly 
because those methods were designed to 
evaluate the similarity of sets, not sequences, 
meaning that the data must be either sorted in 
some way or split up into smaller logical 
chunks to reduce the time required to find the 
closest match. Even if the initial similarity 
function was linear, the search for the closest 
match would have to be quadratic because the 
function would have to be performed for each 
set individually. The contextual similarity 
function proved to be of quasilinear-time 
complexity for both comparison and matching 
of sequences. 
 
3 The Function  

The basic idea behind the concept lies in one of 
the most important properties of a sequence, the 
order of items within it. The second property, 
the content, will be awarded in a way where it 
won’t matter as much as the order or position 
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where it is located. The best idea is to imagine 
the initial sequence as a set of characters 
(sentence) and the  second as a text. The 
goal is to score how relevant the text is given 
the first sequence of characters. From this point 
on, the first sequence (sentence) will be denoted 
as N and the second (the text) as M. 

The probability of N  being found as a 
subsequence of M due to sheer coincidence 
(without having any contextual relation with it) 
decreases exponentially as the length of N 
increases. We will apply this as a heuristic 
although it has some deep roots in linguistics 
due to the power law and the Zipfian 
distribution. [2] This means that we’re going to 
award the appearance of a subsequence of N 
within M based on the length of the 
subsequence naming it shared context: 

 

 
 

(1) 

Note that  represents the substring of N 
starting at position i (inclusive) and ending at 

position j (exclusive),  represents the total 
length of the string. We used the intersection 

symbol  to denote if or if not M contains the 

entire substring . In case it does the 

length  is added to the score, 0 
otherwise.  

We are summing up the lengths (cardinalities) 
of all possible subsequences of N found in M 
thus rewarding the position and order rather 
than the actual number of matches. We don’t 
pay attention to how many times a certain 
subset occurs to avoid “is”, “the”, “a” and 
similar words to add up on quantity rather than 
the way they create contextual meaning. 

The problem with this measurement is that it 
has no upper bound thus grows infinitely. This 

would result in sequences which are generally 
larger to be “more similar” than other sequences 
with a smaller length which is not true. To solve 
this problem we must normalize our function by 

dividing with the coefficient  which 
represents the total score that can be achieved 
under the assumption that the first sequence is a 
proper subsequence of the second meaning that 

. In this case we can compute  directly 
as shown in (2) below: 

 

 
 

(2) 

Assuming that n is replaced by the length of our 
first sequence N we can express our 
normalization coefficient as the following 
binomial: 

                                           (3) 

Now, once we have normalized our initial 
function (1) we arrive at the final expression for 
the contextual similarity: 

 

  
 

(4) 

This is the normalized function and measures 
the contextual relation between two sequences.  

The domain of the function (4) is  
where the similarity (and probability of non-
random relationship between the two 

sequences) is increasing with  respectively. 
When the entire first sequence is a subsequence 

of M, the contextual similarity . In the 
case where the two sequences are disjunctive, 
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4 Optimizations 

We will stop to review the naïve 
implementation which would follow directly 
from the mathematical model. The first thing to 

notice is that if our second sequence  does not 

contain a subsequence  there is no need 

to check , if N = “ABC” and M = 
“AXBC” we will find that M does not contain 
“AB” thus it is redundant to check for “ABC” 
and we can stop further computation on the 
given subsequence of N. 

The second optimization addresses the problem 

where  or in general when  contains 

long subsequences of  resulting in many 
nested iterations. If we look closely we will 
notice that our normalization coefficient can be 
used in a way which will lead to us avoiding re-
doing done work. Consider the following 
example where N = “AAAAxA” and M = 
“AAAAAA”. Once we’ve evaluated the sum of 
all lengths of all subsequences of N up to “x” 
(“AAAA”) we can agree that repeating the 
same process for (“AAA”) is a waste because 
we know that they exist within M so we can 

skip that part and add  directly. This 
will further reduce the gaps between the worst, 
average and best cases. 

The third optimization would be to use the 
unique property of the contextual similarity 
function that allows us to review two or more 
sequences at once by concatenating them. These 
sequences can be picked at random and don’t 
have to be correlated, meaning that we could 
merge four sequences into two super-sequences 
and review two sequences at once. Note that we 
should add one character as a separator to avoid 
creating subsequences which weren’t there 
initially. For this we should use a character 
which is not part of the alphabet. Now, we can 

compare our initial sequence  with, for 

example, two super-sequences  and 

 in two computations rather than 
four. The super-sequence which scores more 
has an increased probability of one of its 

subsequences to be related to . Once we 
decide which super-sequence probably contains 
our information, we can slice it in two halves 
and repeat the process until only one item is 
left. To keep the information about the initial 
groups we will use a list where each item is a 
known sequence M and only do grouping 
logically, based on indexes, performing a 
context-driven dichotomic search. This way, 
instead of doing 1024 computations for 1024 
sequences we only have to do 

. 

 
5 Theoretical Complexity 

In this section we’re going to discuss the worst, 
best and average time complexity of the 
optimized algorithm. 

The worst case occurs when the two strings we 
are comparing are equal. In this case the outer 
loop would only iterate once (due to the second 
optimization) and the inner loop would iterate N 
times. For this calculation, we’re assuming the 
Boyer-Moore  string search algorithm which is 
known to have a linear average time 
complexity. This would give us the worst case 

time complexity of  so 
we can say that our algorithm, in the worst case, 
will execute in quadratic time. 

The best case occurs when the two strings that 
we are comparing are disjunctive thus the outer 
loop would iterate N times while the inner loop 
would iterate once per outer iteration and the 
string search operation would be performed on 
a single character every time giving us the best 

case time complexity of:    
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The average case, unlike the previous two, is 
more difficult to evaluate. Since we don’t know 
how the input will look like, we’re assuming 
two random sequences each of length N. The 
actual character at any position is picked 
uniformly at random from an alphabet of size q. 
The probability of picking any specific 

character is . By picking two fixed 
positions, we can say that the probability for m 
consecutive matches, starting at position i in the 
first sequence and starting at position j in the 

second sequence is . 

Let  be a random variable with the value 
1 if starting at position i and position j there is a 
match of length m and 0 otherwise. It takes on 1 

with the probability  and 0 with the 

probability . Counting all matches we 
can say that: 

                (5) 

Remember that  represents the total number 
of pairs with starting positions i, j that have a 
match of length m. We're interested in the 

expected average value of  because that 
will tell us what the most likely length of the 
common substring of two randomly generated 
strings is. We can imagine this as taking the 
mean over infinitly many lengths of  the longest 
common substrings for two randomly generated 
sequences of length m. This is expressed in the 
equation (6) below: 

 

 

(6) 

Due to the linearity of expectation we can take 
the sum of the expected values instead of the 

expectation of the sum so we can define  
as: 

 

 

(7) 

 If we look at the expectation of  we can 
see that 

. 
We can finally express the expected number of 
matches in two random sequences as shown in 
(8): 

 

 
 

(8) 

The assumption is that  which means 
that we don't have to account for different upper 
limits of the two sums. This is how the 
algorithm was designed to work so it is a good 
approximation for the average case. We're 

interested in how  behaves 
asymptotically as m increases. 

Let r be the largest value of m such that 

. Knowing what r is will give us a 
good heuristic insight into knowing what the 
expected longest common substring is. We 
arrive at the following inequality: 

 

 

  (9) 

Since r is the largest value of m such that this 

holds, we must also say that . 
Once rearranged and further simplified, we 
express the probability p in function of the 
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alphabet size q as initially and arrive at the 
following approximation: 

  
 

(10) 

 

 
 

 

From this approximation we can learn about the 
asymptotic behaviour of the expected length of 
the longest common substring as the length of 
the string n increases. A simulation has been 
created to help visualize our mathematical 
predictions which can be seen in Fig. 1. We 
have created pairs of randomly generated 
sequences of the same alphabet size and 
measured the longest common substring length 
in function of the lengths of the two sequences. 
Each data point on the scatterplot in Fig. 1. was 
computed as the arithmetic mean over 1000 
iterations in order to rule out random 
occurances as much as possible. We can see the 
results of this simulation the scatterplot below: 

 

Fig. 1. The asymptotic behavior of the growth of the 
longest common substrings in function of string size. 

We can see our upper and lower bounds which 
give us an insight into where we expect to find 
our random values. 

With this approximation proven, we can finally 
compute the average time complexity of our 
algorithm. To simplify and leave some room for 
error, we’re going to take out the second 
optimization from our evaluation. This means 
that the outer loop structure will always iterate 
N times while the inner loop, due to the first 
optimization, only iterates in function of the 

longest common substring which was just 
proven to grow logarithmically. Since the string 
matching algorithm inside the second loop only 
ever operates on the longest common substrings 

of length  we can say that the average 
time complexity of our algorithm is: 

 

It is important to note that our method allows 
for measurments on the union of two or more 
sequences. Since we know that binary search 
has a known average time complexity of 

 (where m is the total number of items) 
and saying, for the sake of simplification, that 

, meaning that the number of sequences 
to search through is equivalent to the number of 
symbols in each sequence (which is way more 
than the usual scenario of use) the complexity 
of comparing our sequence to all existing 

sequences is:   
that is, still quasilinear. In contrast, other 
methods such as the Jaccard Index would 
perform search operations in quadratic time 
thus the proposed method is faster. 

Another thing to note is that the reason why our 
assumption of random strings would be a good 
representative for the average case is due to the 
fact that both randomly generated and coherent 
text follow a Zipfian distribution. [2] 

 
6 Benchmarks 

We have measured only the first and second 
optimization impact on the general performance 
of the algorithm. The third optimization was 
always enabled to speed things up. The first 
three tests have been ran for all three cases 
(with no optimization, first optimization and 
second optimization enabled). The first 
sequence N was always populated with 33 
characters and each list item M was exactly 33 
characters long. The list was filed with 2, 4, 8, 
16.. 32768 items where every item was 33 
characters long. The first test populated the list 
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with items which would yield a very high 
similarity when evaluated. The second test 
generated a list of random items each 33 
characters long, to test the performance against 
random similarity. The third test populated the 
list with items that would yield a low similarity 
on average. 

Our theory predicted that the first optimization 
would reduce the execution time when the 
similarity was high (worst case) and that our 
second optimization would further reduce the 
speed gap between the worst and best case 
(high and low similarity). The results only show 
how  each optimization changed the algorithm 
performance in the case of high, random and 
low similarity in data.  

 

 

Fig. 2. Algorithm search performance in the case of low, 
random and high similarity data, without optimizations. 

 

Fig. 3. Algorithm search performance in the case of low, 
random and high similarity data, with only the first 
optimization enabled. 

 

 

Fig. 4. Algorithm search performance in the case of low, 
random and high similarity data, with only the second 
optimization enabled. 

 

 

Fig. 5. Asymptotic behaviour of the average time 
execution in function of the length of the first sequence. 

 

Fig. 6. Asymptotic behaviour of the average time 
execution in function of the number of sequences to 
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search through. All sequences have been generated 
randomly. 

 
7 The Scarlet System 

Scarlet is designed to work best with  a question 
/ answer scheme but is highly adaptable to a 
vast range of different input schemes. Complete 
system can be divided into 3 mayor modules: 
natural language processing, pseudo contextual 
data analysis and trial & error learning. 
Complete Scarlet system and relationship 
between these modules is presented in the 
Figure 1. 

The natural language processing module 
implements different methods trying to model 
and approximate answer patterns based on the 
input pattern. This is a very important first step 
because probability of the search method to find 
a solution/answer is increased exponentially 
depending on the quality of the parsed input. 
This module is in a feedback relation with the 
trial & error learning module. 

The main component of the Scarlet system is 
the pseudo contextual data analysis which 
makes the same implementation capable of 
working for almost any spoken language. This 
module takes the processed input data from the 
previous module and recursively browses 
through all the folders and sub folders on a FTP 
or local server. The currently supported 
document files are "doc", "docx" and "pdf".   

 To speed things up the end user 
(student) can beforehand apply a filter mask by 
selecting a class subject. In addition, this 
module supports web search. It allows the user 
to search the web (up to a certain depth) and 
process the information from web pages, 
prompting what is most likely the answer for 
the given input. 

The trial & error learning module is the last of 
the three modules. At this point the user is 
prompted a question if the Scarlets’ answer was 
good or bad. Depending on this user feedback, 
in case it was positive, the system saves the 
given input-output pattern into the pattern table. 
The next time when the user sends some request 
to the system it will first browse through this 
table and compare the user input to the known 
inputs. When the system finds result that is "fit" 
enough it will look at the saved input-output 
pattern table and try to find how to morph the 
input in order to get the desired output and 
applies this strategy to the new user input. The 
algorithms used in aforementioned process will 
be described later in the paper. 
 
8 The Scarlet Algorithms 

As mentioned in previous part of this paper, 
there are a few algorithms that were developed 
for these specific purposes. The two most 
notable ones are: the pseudo contextual data 
analysis algorithm which will be described in 
detail. 
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Fig. 7. Scarlet System Components 

8.1 Pseudo contextual data analysis 

This algorithm is the main algorithm within the 
pseudo contextual data analysis module 
(contextual similarity1). The goal of this 
algorithm is to determinate similarity between 
two sets (S1 and S2). Similarity determination 
is done  by the previously presented contextual 
similarity equation (4). 

The  algorithm is divided into two steps. The 
first step is to run and compare the entire 
document file to the given input string. We do 
this for all documents and only take the one 
with the biggest score (most likely containing 
what we need) and prompt the student which 
document probably contains his answer and 
should be appropriate for studying. 

During second step algorithm parses all 
sentences from the text as individual strings and 
repeat the algorithm for each sentence. We keep 
only the one sentences that scores the most thus 
most likely contain the definition or answer that 
user is looking for.  

An additional (optional) third step can be 
applied in terms of a selection filter which 

1In this paper word sets will be considered as 
synonym for partially ordered sets 

allows user to narrow down the searching area 
by defining subject to his question belongs to. 

8.2 Structure Anchoring Algorithm  

Structure Anchoring Algorithm is the main 
algorithm in the natural language processing 
module. It is also used in the trial & error 
learning module. For three given strings (S1, 
S2, S3) it will try to "morph" S1 based on how 
you can construct S3 from S2. It does this by 
finding the biggest common substring found in 
S1, S2, and S3. A suffix tree can be used to find 
substrings fast and efficiently. This depends on 
how large the string is (i.e. if it pays off to 
construct a tree first) and then the transversal is 
in O(n) linear time. 

During The next step system anchors this 
common information and observes everything 
left and right of the anchor point. First it 
anchors the sample input S2 and the sample 
output S3. Then it looks for words (left of the 
anchor) that have been moved right of the 
anchor. If it finds only one word that does this, 
it anchors string S1 and moves everything left 
from S1's anchor point to the right. The same 
algorithm is applied for words that have been 
right of the anchor point and which migrated to 
the left. 

Here is an example situation where Structure 
Anchoring is applied. 
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S1 = "Who is Andrew?" 

S2 = "Who is Robert?" 

S3 = "Robert is a person" 

The anchor in this example would be the word 
is because that’s the only word common in all 3 
strings at once. Next it looks if any word left of 
the anchor point in S2 is contained right of the 
anchor point in S3. This is not the case so it 
moves on checking for the opposite case (if any 
word right of the anchor point in S2 is 
contained in S3).  

The word "Robert" fulfills these criteria thus 
everything that is right of the anchor in S1 is 
moved to the left. Finally, system joins these 
strings as follows {newLeft} {anchor} {new 
Right} to get the newly morphed S1: "Andrew 
is".  

It is important to note that there is no way to 
turn the string into "Andrew is a person" 
because system at this point is unable to 
conclude that the word Andrew has any 
contextual similarity with the word Robert. 
However, its content is good enough for the 
pseudo contextual search algorithm which will 
most probably produce better result. 

Although the algorithm seems rather simple and 
inefficient, it is able to increases the rate at 
which the system finds an appropriate response. 
A neural network would probably be a better 
solution and produce much better learning 
curve. 
 
9 Implementation 

In order to demonstrate the practical application 
of the developed algorithm we implemented 
basic version of Scarlet agent shown in Figure 
2. Current version contains three main operating 
modes: Web, FTP and Utility.  

In the first operating mode (Web) agent is 
configured to search the Internet. After the user 
enters a specific question agent permutes the 
input string so that it can recognize the form of 
the appropriate answer, for example: 

>> Input: What is the capital of France?  

>> Output: The capital of France is  

This is followed by a second step where 
newly transformed string is entered into 
Google's search engine which returns the first N 
websites. Result set is then parsed by the 
pseudo contextual analysis algorithm which 
calculates how similar the transformed string is 
to the text that is received from Google. When 
the best source of information is determined, 
the same algorithm is applied to all sentences 
within the best results and return a sentence that 
have the highest score. 

 

Fig 8. Scarlet System Components 

FTP operating mode uses the same principle but 
with a difference that files represent source of 
information and are placed on the FTP server. It 
is important to emphasis that the used algorithm 
works the same for any language. 

Utility operating mode is basically the same 
algorithm that compares the input string with 
fixed template string and based on "context" 
execute various commands like opening or 
closing programs, searching YouTube etc. 
 
10 Conclusion 
 
This Scarlet system proved to be very effective 
in contextual information analysis thus in 
returning the proper document that is adequate 
to the subject. It can differentiate between 
different subjects (Databases, Programming, 
Communication Technologies etc.) due to the 
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different context and keywords. The case where 
the system has found not only the right subject, 
but the right lecture is also very high. It mostly 
returns the exact definition the user asked for 
(not using the learning module which would 
yield even better results).  
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