
 Artificial Teaching Assistant - Scarlet

ILHAN KARIĆ, ZANIN VEJZOVIĆ, DENIS MUŠIĆ, EMINA JUNUZ, MIRZA SMAJIĆ
Faculty of Information Technologies

University of “Džemal Bijedić"
Mostar,

BOSNIA AND HERZEGOVINA
ilhan.karic@edu.fit.ba, zanin@edu.fit.ba, denis@edu.fit.ba, emina@edu.fit.ba, mirza.smajic@edu.fit.ba

Abstract: - Scarlet an Artificial Teaching Assistant is a personal digital assistant that has been developed with
main aim to assist students in their learning process by ensuring fast and efficiently search of documents and
learning materials. Scarlet is able to give an adequate response to a specific question based on knowledge
gathered by an unique algorithm which enables her to recognize context during file and web page content
search. After finding the most appropriate answer Scarlet seeks for student feedback in order to improve future
search. The metric proposed is based on the power law which occurs in natural language, that is the Zipfian
distribution[1]. It is designed to work for any spoken language although it might work on some better than
other depending on the nature of the language, the structure, grammar and semantics. The method uses this
metric to derive context from data and then queries the data source looking for the best match. The whole
implementation is rounded off by a learning module which gives the system a learning curve based on users
(students) scoring how relevant the output is among other parameters. All the main algorithms and newly
proposed metrics like the “contextual similarity” are presented in the same paper.

Key-Words: - Artificial intelligence, machine learning, pattern recognition, natural language processing

1 Introduction

Evaluating the similarity of two sequences is
a standard computer science problem and has a
wide area of use. A great deal of applications,
from search engines to document ranking, from
gene finding to prediction of protein functions,
from network surveillance tools to anti-virus
programs critically depend on analysis of
sequential data. [1]

We will describe the matching of two
sequences as well as the search process for the
closest matching sequence from a pool of
sequences which appeared to be the bottleneck
of other methods like the Jaccard Index. We are
also going to explain the naïve implementation
which would directly follow from the
mathematical model and optimizations, for
which we have provided proof in the same
paper, which will reduce the time complexity
for both sequence comparison and sequence
matching down to quasilinear time. In the end
we will provide our benchmarks with data
collected during the research.

2 The Problem
The main performance issue with sequence
matching proved to be the fact that known
methods didn’t perform well on measurements
made on the union of two or more sequences
which are not directly correlated. This is mainly
because those methods were designed to
evaluate the similarity of sets, not sequences,
meaning that the data must be either sorted in
some way or split up into smaller logical
chunks to reduce the time required to find the
closest match. Even if the initial similarity
function was linear, the search for the closest
match would have to be quadratic because the
function would have to be performed for each
set individually. The contextual similarity
function proved to be of quasilinear-time
complexity for both comparison and matching
of sequences.

3 The Function

The basic idea behind the concept lies in one of
the most important properties of a sequence, the
order of items within it. The second property,
the content, will be awarded in a way where it
won’t matter as much as the order or position

WSEAS TRANSACTIONS on COMPUTER RESEARCH
Ilhan Karić, Zanin Vejzović,

Denis Mušić, Emina Junuz, Mirza Smajić

E-ISSN: 2415-1521 137 Volume 5, 2017

where it is located. The best idea is to imagine
the initial sequence as a set of characters
(sentence) and the second as a text. The
goal is to score how relevant the text is given
the first sequence of characters. From this point
on, the first sequence (sentence) will be denoted
as N and the second (the text) as M.

The probability of N being found as a
subsequence of M due to sheer coincidence
(without having any contextual relation with it)
decreases exponentially as the length of N
increases. We will apply this as a heuristic
although it has some deep roots in linguistics
due to the power law and the Zipfian
distribution. [2] This means that we’re going to
award the appearance of a subsequence of N
within M based on the length of the
subsequence naming it shared context:

(1)

Note that represents the substring of N
starting at position i (inclusive) and ending at

position j (exclusive), represents the total
length of the string. We used the intersection

symbol to denote if or if not M contains the

entire substring . In case it does the

length is added to the score, 0
otherwise.

We are summing up the lengths (cardinalities)
of all possible subsequences of N found in M
thus rewarding the position and order rather
than the actual number of matches. We don’t
pay attention to how many times a certain
subset occurs to avoid “is”, “the”, “a” and
similar words to add up on quantity rather than
the way they create contextual meaning.

The problem with this measurement is that it
has no upper bound thus grows infinitely. This

would result in sequences which are generally
larger to be “more similar” than other sequences
with a smaller length which is not true. To solve
this problem we must normalize our function by

dividing with the coefficient which
represents the total score that can be achieved
under the assumption that the first sequence is a
proper subsequence of the second meaning that

. In this case we can compute directly
as shown in (2) below:

(2)

Assuming that n is replaced by the length of our
first sequence N we can express our
normalization coefficient as the following
binomial:

 (3)

Now, once we have normalized our initial
function (1) we arrive at the final expression for
the contextual similarity:

(4)

This is the normalized function and measures
the contextual relation between two sequences.

The domain of the function (4) is
where the similarity (and probability of non-
random relationship between the two

sequences) is increasing with respectively.
When the entire first sequence is a subsequence

of M, the contextual similarity . In the
case where the two sequences are disjunctive,

WSEAS TRANSACTIONS on COMPUTER RESEARCH
Ilhan Karić, Zanin Vejzović,

Denis Mušić, Emina Junuz, Mirza Smajić

E-ISSN: 2415-1521 138 Volume 5, 2017

4 Optimizations

We will stop to review the naïve
implementation which would follow directly
from the mathematical model. The first thing to

notice is that if our second sequence does not

contain a subsequence there is no need

to check , if N = “ABC” and M =
“AXBC” we will find that M does not contain
“AB” thus it is redundant to check for “ABC”
and we can stop further computation on the
given subsequence of N.

The second optimization addresses the problem

where or in general when contains

long subsequences of resulting in many
nested iterations. If we look closely we will
notice that our normalization coefficient can be
used in a way which will lead to us avoiding re-
doing done work. Consider the following
example where N = “AAAAxA” and M =
“AAAAAA”. Once we’ve evaluated the sum of
all lengths of all subsequences of N up to “x”
(“AAAA”) we can agree that repeating the
same process for (“AAA”) is a waste because
we know that they exist within M so we can

skip that part and add directly. This
will further reduce the gaps between the worst,
average and best cases.

The third optimization would be to use the
unique property of the contextual similarity
function that allows us to review two or more
sequences at once by concatenating them. These
sequences can be picked at random and don’t
have to be correlated, meaning that we could
merge four sequences into two super-sequences
and review two sequences at once. Note that we
should add one character as a separator to avoid
creating subsequences which weren’t there
initially. For this we should use a character
which is not part of the alphabet. Now, we can

compare our initial sequence with, for

example, two super-sequences and

 in two computations rather than
four. The super-sequence which scores more
has an increased probability of one of its

subsequences to be related to . Once we
decide which super-sequence probably contains
our information, we can slice it in two halves
and repeat the process until only one item is
left. To keep the information about the initial
groups we will use a list where each item is a
known sequence M and only do grouping
logically, based on indexes, performing a
context-driven dichotomic search. This way,
instead of doing 1024 computations for 1024
sequences we only have to do

.

5 Theoretical Complexity

In this section we’re going to discuss the worst,
best and average time complexity of the
optimized algorithm.

The worst case occurs when the two strings we
are comparing are equal. In this case the outer
loop would only iterate once (due to the second
optimization) and the inner loop would iterate N
times. For this calculation, we’re assuming the
Boyer-Moore string search algorithm which is
known to have a linear average time
complexity. This would give us the worst case

time complexity of so
we can say that our algorithm, in the worst case,
will execute in quadratic time.

The best case occurs when the two strings that
we are comparing are disjunctive thus the outer
loop would iterate N times while the inner loop
would iterate once per outer iteration and the
string search operation would be performed on
a single character every time giving us the best

case time complexity of:

WSEAS TRANSACTIONS on COMPUTER RESEARCH
Ilhan Karić, Zanin Vejzović,

Denis Mušić, Emina Junuz, Mirza Smajić

E-ISSN: 2415-1521 139 Volume 5, 2017

The average case, unlike the previous two, is
more difficult to evaluate. Since we don’t know
how the input will look like, we’re assuming
two random sequences each of length N. The
actual character at any position is picked
uniformly at random from an alphabet of size q.
The probability of picking any specific

character is . By picking two fixed
positions, we can say that the probability for m
consecutive matches, starting at position i in the
first sequence and starting at position j in the

second sequence is .

Let be a random variable with the value
1 if starting at position i and position j there is a
match of length m and 0 otherwise. It takes on 1

with the probability and 0 with the

probability . Counting all matches we
can say that:

 (5)

Remember that represents the total number
of pairs with starting positions i, j that have a
match of length m. We're interested in the

expected average value of because that
will tell us what the most likely length of the
common substring of two randomly generated
strings is. We can imagine this as taking the
mean over infinitly many lengths of the longest
common substrings for two randomly generated
sequences of length m. This is expressed in the
equation (6) below:

(6)

Due to the linearity of expectation we can take
the sum of the expected values instead of the

expectation of the sum so we can define
as:

(7)

 If we look at the expectation of we can
see that

.
We can finally express the expected number of
matches in two random sequences as shown in
(8):

(8)

The assumption is that which means
that we don't have to account for different upper
limits of the two sums. This is how the
algorithm was designed to work so it is a good
approximation for the average case. We're

interested in how behaves
asymptotically as m increases.

Let r be the largest value of m such that

. Knowing what r is will give us a
good heuristic insight into knowing what the
expected longest common substring is. We
arrive at the following inequality:

 (9)

Since r is the largest value of m such that this

holds, we must also say that .
Once rearranged and further simplified, we
express the probability p in function of the

WSEAS TRANSACTIONS on COMPUTER RESEARCH
Ilhan Karić, Zanin Vejzović,

Denis Mušić, Emina Junuz, Mirza Smajić

E-ISSN: 2415-1521 140 Volume 5, 2017

alphabet size q as initially and arrive at the
following approximation:

(10)

From this approximation we can learn about the
asymptotic behaviour of the expected length of
the longest common substring as the length of
the string n increases. A simulation has been
created to help visualize our mathematical
predictions which can be seen in Fig. 1. We
have created pairs of randomly generated
sequences of the same alphabet size and
measured the longest common substring length
in function of the lengths of the two sequences.
Each data point on the scatterplot in Fig. 1. was
computed as the arithmetic mean over 1000
iterations in order to rule out random
occurances as much as possible. We can see the
results of this simulation the scatterplot below:

Fig. 1. The asymptotic behavior of the growth of the
longest common substrings in function of string size.

We can see our upper and lower bounds which
give us an insight into where we expect to find
our random values.

With this approximation proven, we can finally
compute the average time complexity of our
algorithm. To simplify and leave some room for
error, we’re going to take out the second
optimization from our evaluation. This means
that the outer loop structure will always iterate
N times while the inner loop, due to the first
optimization, only iterates in function of the

longest common substring which was just
proven to grow logarithmically. Since the string
matching algorithm inside the second loop only
ever operates on the longest common substrings

of length we can say that the average
time complexity of our algorithm is:

It is important to note that our method allows
for measurments on the union of two or more
sequences. Since we know that binary search
has a known average time complexity of

 (where m is the total number of items)
and saying, for the sake of simplification, that

, meaning that the number of sequences
to search through is equivalent to the number of
symbols in each sequence (which is way more
than the usual scenario of use) the complexity
of comparing our sequence to all existing

sequences is:
that is, still quasilinear. In contrast, other
methods such as the Jaccard Index would
perform search operations in quadratic time
thus the proposed method is faster.

Another thing to note is that the reason why our
assumption of random strings would be a good
representative for the average case is due to the
fact that both randomly generated and coherent
text follow a Zipfian distribution. [2]

6 Benchmarks

We have measured only the first and second
optimization impact on the general performance
of the algorithm. The third optimization was
always enabled to speed things up. The first
three tests have been ran for all three cases
(with no optimization, first optimization and
second optimization enabled). The first
sequence N was always populated with 33
characters and each list item M was exactly 33
characters long. The list was filed with 2, 4, 8,
16.. 32768 items where every item was 33
characters long. The first test populated the list

WSEAS TRANSACTIONS on COMPUTER RESEARCH
Ilhan Karić, Zanin Vejzović,

Denis Mušić, Emina Junuz, Mirza Smajić

E-ISSN: 2415-1521 141 Volume 5, 2017

with items which would yield a very high
similarity when evaluated. The second test
generated a list of random items each 33
characters long, to test the performance against
random similarity. The third test populated the
list with items that would yield a low similarity
on average.

Our theory predicted that the first optimization
would reduce the execution time when the
similarity was high (worst case) and that our
second optimization would further reduce the
speed gap between the worst and best case
(high and low similarity). The results only show
how each optimization changed the algorithm
performance in the case of high, random and
low similarity in data.

Fig. 2. Algorithm search performance in the case of low,
random and high similarity data, without optimizations.

Fig. 3. Algorithm search performance in the case of low,
random and high similarity data, with only the first
optimization enabled.

Fig. 4. Algorithm search performance in the case of low,
random and high similarity data, with only the second
optimization enabled.

Fig. 5. Asymptotic behaviour of the average time
execution in function of the length of the first sequence.

Fig. 6. Asymptotic behaviour of the average time
execution in function of the number of sequences to

WSEAS TRANSACTIONS on COMPUTER RESEARCH
Ilhan Karić, Zanin Vejzović,

Denis Mušić, Emina Junuz, Mirza Smajić

E-ISSN: 2415-1521 142 Volume 5, 2017

search through. All sequences have been generated
randomly.

7 The Scarlet System

Scarlet is designed to work best with a question
/ answer scheme but is highly adaptable to a
vast range of different input schemes. Complete
system can be divided into 3 mayor modules:
natural language processing, pseudo contextual
data analysis and trial & error learning.
Complete Scarlet system and relationship
between these modules is presented in the
Figure 1.

The natural language processing module
implements different methods trying to model
and approximate answer patterns based on the
input pattern. This is a very important first step
because probability of the search method to find
a solution/answer is increased exponentially
depending on the quality of the parsed input.
This module is in a feedback relation with the
trial & error learning module.

The main component of the Scarlet system is
the pseudo contextual data analysis which
makes the same implementation capable of
working for almost any spoken language. This
module takes the processed input data from the
previous module and recursively browses
through all the folders and sub folders on a FTP
or local server. The currently supported
document files are "doc", "docx" and "pdf".

 To speed things up the end user
(student) can beforehand apply a filter mask by
selecting a class subject. In addition, this
module supports web search. It allows the user
to search the web (up to a certain depth) and
process the information from web pages,
prompting what is most likely the answer for
the given input.

The trial & error learning module is the last of
the three modules. At this point the user is
prompted a question if the Scarlets’ answer was
good or bad. Depending on this user feedback,
in case it was positive, the system saves the
given input-output pattern into the pattern table.
The next time when the user sends some request
to the system it will first browse through this
table and compare the user input to the known
inputs. When the system finds result that is "fit"
enough it will look at the saved input-output
pattern table and try to find how to morph the
input in order to get the desired output and
applies this strategy to the new user input. The
algorithms used in aforementioned process will
be described later in the paper.

8 The Scarlet Algorithms

As mentioned in previous part of this paper,
there are a few algorithms that were developed
for these specific purposes. The two most
notable ones are: the pseudo contextual data
analysis algorithm which will be described in
detail.

WSEAS TRANSACTIONS on COMPUTER RESEARCH
Ilhan Karić, Zanin Vejzović,

Denis Mušić, Emina Junuz, Mirza Smajić

E-ISSN: 2415-1521 143 Volume 5, 2017

Fig. 7. Scarlet System Components

8.1 Pseudo contextual data analysis

This algorithm is the main algorithm within the
pseudo contextual data analysis module
(contextual similarity1). The goal of this
algorithm is to determinate similarity between
two sets (S1 and S2). Similarity determination
is done by the previously presented contextual
similarity equation (4).

The algorithm is divided into two steps. The
first step is to run and compare the entire
document file to the given input string. We do
this for all documents and only take the one
with the biggest score (most likely containing
what we need) and prompt the student which
document probably contains his answer and
should be appropriate for studying.

During second step algorithm parses all
sentences from the text as individual strings and
repeat the algorithm for each sentence. We keep
only the one sentences that scores the most thus
most likely contain the definition or answer that
user is looking for.

An additional (optional) third step can be
applied in terms of a selection filter which

1In this paper word sets will be considered as
synonym for partially ordered sets

allows user to narrow down the searching area
by defining subject to his question belongs to.

8.2 Structure Anchoring Algorithm

Structure Anchoring Algorithm is the main
algorithm in the natural language processing
module. It is also used in the trial & error
learning module. For three given strings (S1,
S2, S3) it will try to "morph" S1 based on how
you can construct S3 from S2. It does this by
finding the biggest common substring found in
S1, S2, and S3. A suffix tree can be used to find
substrings fast and efficiently. This depends on
how large the string is (i.e. if it pays off to
construct a tree first) and then the transversal is
in O(n) linear time.

During The next step system anchors this
common information and observes everything
left and right of the anchor point. First it
anchors the sample input S2 and the sample
output S3. Then it looks for words (left of the
anchor) that have been moved right of the
anchor. If it finds only one word that does this,
it anchors string S1 and moves everything left
from S1's anchor point to the right. The same
algorithm is applied for words that have been
right of the anchor point and which migrated to
the left.

Here is an example situation where Structure
Anchoring is applied.

WSEAS TRANSACTIONS on COMPUTER RESEARCH
Ilhan Karić, Zanin Vejzović,

Denis Mušić, Emina Junuz, Mirza Smajić

E-ISSN: 2415-1521 144 Volume 5, 2017

S1 = "Who is Andrew?"

S2 = "Who is Robert?"

S3 = "Robert is a person"

The anchor in this example would be the word
is because that’s the only word common in all 3
strings at once. Next it looks if any word left of
the anchor point in S2 is contained right of the
anchor point in S3. This is not the case so it
moves on checking for the opposite case (if any
word right of the anchor point in S2 is
contained in S3).

The word "Robert" fulfills these criteria thus
everything that is right of the anchor in S1 is
moved to the left. Finally, system joins these
strings as follows {newLeft} {anchor} {new
Right} to get the newly morphed S1: "Andrew
is".

It is important to note that there is no way to
turn the string into "Andrew is a person"
because system at this point is unable to
conclude that the word Andrew has any
contextual similarity with the word Robert.
However, its content is good enough for the
pseudo contextual search algorithm which will
most probably produce better result.

Although the algorithm seems rather simple and
inefficient, it is able to increases the rate at
which the system finds an appropriate response.
A neural network would probably be a better
solution and produce much better learning
curve.

9 Implementation

In order to demonstrate the practical application
of the developed algorithm we implemented
basic version of Scarlet agent shown in Figure
2. Current version contains three main operating
modes: Web, FTP and Utility.

In the first operating mode (Web) agent is
configured to search the Internet. After the user
enters a specific question agent permutes the
input string so that it can recognize the form of
the appropriate answer, for example:

>> Input: What is the capital of France?

>> Output: The capital of France is

This is followed by a second step where
newly transformed string is entered into
Google's search engine which returns the first N
websites. Result set is then parsed by the
pseudo contextual analysis algorithm which
calculates how similar the transformed string is
to the text that is received from Google. When
the best source of information is determined,
the same algorithm is applied to all sentences
within the best results and return a sentence that
have the highest score.

Fig 8. Scarlet System Components

FTP operating mode uses the same principle but
with a difference that files represent source of
information and are placed on the FTP server. It
is important to emphasis that the used algorithm
works the same for any language.

Utility operating mode is basically the same
algorithm that compares the input string with
fixed template string and based on "context"
execute various commands like opening or
closing programs, searching YouTube etc.

10 Conclusion

This Scarlet system proved to be very effective
in contextual information analysis thus in
returning the proper document that is adequate
to the subject. It can differentiate between
different subjects (Databases, Programming,
Communication Technologies etc.) due to the

WSEAS TRANSACTIONS on COMPUTER RESEARCH
Ilhan Karić, Zanin Vejzović,

Denis Mušić, Emina Junuz, Mirza Smajić

E-ISSN: 2415-1521 145 Volume 5, 2017

different context and keywords. The case where
the system has found not only the right subject,
but the right lecture is also very high. It mostly
returns the exact definition the user asked for
(not using the learning module which would
yield even better results).

References:

[1] Konrad Rieck, Pavel Laskov, “Linear-Time
Computation of Similarity Measures for Sequential
Data”, Journal of Machine Learning Research 9
(2008) 23-48 pp. 1

[2] S T. Piantadosi, “Zipf’s word frequency law in
natural language: A critical review and future
directions”, Psychonomic Bulletin & Review, vol.
21, 2014,pp.1112-1130 to perform linearithmic due
to the nature of the function.

[3] Ljubomir Lazic, Nikos Mastorakis, "Cost
effective software test metrics", WSEAS
Transactions on Computers, pp. 599-619, Vol.7,
Issue 6, 2008

[4] Klimis Ntalianis, Nikos Mastorakis, "Social
Media Video Content Diversity Visualization",
International Journal of Signal Processing, pp. 169-
176, Volume 1, 2016,

WSEAS TRANSACTIONS on COMPUTER RESEARCH
Ilhan Karić, Zanin Vejzović,

Denis Mušić, Emina Junuz, Mirza Smajić

E-ISSN: 2415-1521 146 Volume 5, 2017

